
Distributed Algorithms

Reliable & Causal Broadcast
2nd exercise session

Matteo Monti <matteo.monti@epfl.ch>
Jovan Komatovic <jovan.komatovic@epfl.ch>

1

mailto:matteo.monti@epfl.ch
mailto:jovan.komatovic@epfl.ch

Reliable broadcast
Specification:

● Validity: If a correct process broadcasts m, then it eventually delivers m.

● Integrity: m is delivered by a process at most once, and only if it was
previously broadcast.

● Agreement: If a correct process delivers m, then all correct processes
eventually deliver m.

2

Algorithm: Lazy Reliable Broadcast

Strong accuracy:
No correct process is ever suspected:

Strong completeness:
Eventually, every faulty process is permanently suspected by
every correct process:

Where:
● crashed(F) is the set of crashed processes.
● correct(F) is the set of correct processes.
● H(p, t) is the output of the failure detector of process p at time t.

3

Exercise 1
Implement a reliable broadcast algorithm without using any failure detector, i.e.,
using only BestEffort-Broadcast(BEB).

4

Exercise 2
The reliable broadcast algorithm presented in class has the processes
continuously fill their different buffers without emptying them.

Modify it to remove (i.e. garbage collect) unnecessary messages from the buffers:

A. from, and
B. delivered

5

Uniform reliable broadcast
Specification:

● Validity: If a correct process broadcasts m, then it eventually delivers m.

● Integrity: m is delivered by a process at most once, and only if it was
previously broadcast.

● Uniform Agreement: If a correct process delivers m, then all correct
processes eventually deliver m.

6

Algorithm: All-Ack Uniform Reliable Broadcast

7

Exercise 3
What happens in the reliable broadcast and uniform reliable broadcast algorithms
if the:

A. accuracy, or
B. completeness

property of the failure detector is violated?

8

Exercise 4
Implement a uniform reliable broadcast algorithm without using any failure
detector, i.e., using only BestEffort-Broadcast(BEB).

9

Causal Broadcast
Definition (Happens-before):

We say that an event e happens-before an event e’, and we write e → e’, if one of
the following three cases holds (is true):

(e and e’ are executed by the same process)

(e and e’ are send/receive events of a
message respectively)

(i.e. → is transitive)

10

Causal Broadcast
Specification:

It has the same specification of reliable broadcast, with the additional ordering
constraint of causal order.

More precisely (causal order):

Which means that:
If the broadcast of a message m happens-before the broadcast of a message m’, then no
process delivers m’ unless it has previously delivered m.

11

Exercise 5
Can we devise a broadcast algorithm that does not ensure the causal delivery
property but only (in) its non-uniform variant:

No correct process pi delivers a message m2 unless pi has already delivered every
message m1 such that m1 → m2?

12

Exercise 6
Suggest a memory optimization of the garbage
collection scheme of the following algorithm:

No-Waiting Causal Broadcast

Garbage-Collection of Causal Past in the
“No-Waiting Causal Broadcast”

left is

13

Exercise 7
Can we devise a Best-effort Broadcast algorithm that satisfies the causal delivery
property, without being a causal broadcast algorithm, i.e., without satisfying the
agreement property of a reliable broadcast?

14

Exercise 8
In the “Waiting Causal Broadcast”, we say that V ≤ W if, for every i = 1, …, N, it
holds that V[i] ≤ W[i].

Question: Why do we not use “<” instead of “≤”?

15

