Distributed Algorithms

Reliable & Causal Broadcast
2nd exercise session

Matteo Monti <matteo.monti@epfl.ch>
Jovan Komatovic <jovan.komatovic@epfl.ch>

mailto:matteo.monti@epfl.ch
mailto:jovan.komatovic@epfl.ch

Reliable broadcast
Specification:

e Validity: If a correct process broadcasts m, then it eventually delivers m.

e Integrity: mis delivered by a process at most once, and only if it was
previously broadcast.

e Agreement: If a correct process delivers m, then all correct processes
eventually deliver m.

Algorithm: Lazy Reliable Broadcast

Implements:
ReliableBroadcast, instance rb.

Strong accuracy:
No correct process is ever suspected:

VF,VH,Vt € T,Vp € correct(F),¥Yq :p ¢ H(q,t)

Uses:
BestEffortBroadcast, instance beb;
PerfectFailureDetector, instance P.

upon event (rb, Init) do
correct =11,

from[p] := [0V Strong completeness:

upon event (rb, Broadcast | m) do Eventually, every faulty process is permanently suspected by
trigger (beb, Broadcast | [DATA, self, m]); every correct process:
upon event (beb, Deliver | p, [DATA, s,m]) do VEVH,3t € T,Vp € crashed(F),Vq € correct(F),Vt' >t :p e H(q,t)

if m & from([s] then
trigger (rb, Deliver | s, m);

Sfrom|[s] :=from[s] U {m}; Where:
if s ¢ correct then _ e crashed(F) is the set of crashed processes.
trigger { beb, Broadcast | [DATA, s, m]); e correct(F) is the set of correct processes.
upon event (P, Crash | p) do e H(p, t) is the output of the failure detector of process p at time t.

correct := correct \ {p};
forall m € from[p] do
trigger (beb, Broadcast | [DATA, p, m]); °

Exercise 1

Implement a reliable broadcast algorithm without using any failure detector, i.e.,
using only BestEffort-Broadcast(BEB).

Exercise 2

The reliable broadcast algorithm presented in class has the processes
continuously fill their different buffers without emptying them.

Implements: ReliableBroadcast (rb).
Uses:
BestEffortBroadcast (beb).
PerfectFailureDetector (P).
upon event < Init > do
delivered := &;
correct :=S;
forall pi € S do from[pi] := &;

Modify it to remove (i.e.

A. from, and
B. delivered

upon event < rbBroadcast, m> do upon event < bebDeliver, pi, [Data,pj,m]> do
delivered := delivered U {m}; if m ¢ delivered then
trigger < rbDeliver, self, m>; delivered := delivered U {m};
trigger < bebBroadcast, [Data,self,m]>; trigger < rbDeliver, pj, m>;

if pi ¢ correct then

trigger < bebBroadcast, [Data,pj,m]>;
else

from[pi] : = from[pi] U {[pj,m]};

upon event < crash, pi > do
correct := correct \ {pi};
forall [pj,m] € from[pi] do
trigger < bebBroadcast,[Data,pj,m]>;

garbage collect) unnecessary messages from the buffers:

Uniform reliable broadcast
Specification:

e Validity: If a correct process broadcasts m, then it eventually delivers m.

e Integrity: mis delivered by a process at most once, and only if it was
previously broadcast.

e Uniform Agreement: If a eefreet process delivers m, then all correct
processes eventually deliver m.

Algorithnm: All-Ack Uniform Reliable Broadcast

Implements:
UniformReliableBroadcast, instance urb.

Uses:
BestEffortBroadcast, instance beb.
PerfectFailureDetector, instance P.

upon event (urb, Init) do
delivered = (;
pending =0,
correct .= 11,
forall m do ack[m| := 0;

upon event (urb, Broadcast | m) do
pending = pending U {(self,m)};
trigger (beb, Broadcast | [DATA, self, m]);

upon event (beb, Deliver | p, [DATA, s, m]) do
ack[m] :=ack[m] U {p};
if (s,m) & pending then
pending := pending U {(s, m)};

trigger (beb, Broadcast | [DATA, s, m]);

upon event (P, Crash | p) do
correct = correct \ {p};

function candeliver(m) returns Boolean is
return (correct C ack[m]);

upon exists (s, m) € pending such that candeliver(m) A m ¢ delivered do
delivered := delivered U {m};
trigger (urb, Deliver | s, m);

Exercise 3

What happens in the reliable broadcast and uniform reliable broadcast algorithms
if the:

A. accuracy, or
B. completeness

property of the failure detector is violated?

Exercise 4

Implement a uniform reliable broadcast algorithm without using any failure
detector, i.e., using only BestEffort-Broadcast(BEB).

Causal Broadcast

Definition (Happens-before):

We say that an event e happens-before an event e’, and we write e — €, if one of
the following three cases holds (is true):

sz‘ clls.t. e= 62, e = ef, r< 8 (e and e’ are executed by the same process)
g = send(m *) o 6, — receive(m) (e and e’ are send/receive events of a
— : -

message respectively)

Je" s.t. e > €' — € (i.e. — is transitive)

10

Causal Broadcast
Specification:

It has the same specification of reliable broadcast, with the additional ordering
constraint of causal order.

More precisely (causal order):

broadcast,(m) — broadcast,(m') = deliver,(m) — deliver,(m')

Which means that:

If the broadcast of a message m happens-before the broadcast of a message m’, then no
process delivers m’ unless it has previously delivered m.

11

Exercise 5

Can we devise a broadcast algorithm that does not ensure the causal delivery
property but only (in) its non-uniform variant:

No correct process p, delivers a message m,, unless p. has already delivered every
message m, such that m, — m,?

12

Exercise 6

Suggest a memory optimization of the garbage
collection scheme of the following algorithm:

No-Waiting Causal Broadcast

Implements:
CausalOrderReliableBroadcast, instance crb.

Uses:
ReliableBroadcast, instance rb.

upon event (crb, Init) do
delivered := 0);
past :=;

upon event (crb, Broadcast | m) do
trigger (rb, Broadcast | [DATA, past, m]);
append(past, (self,m));

upon event (rb, Deliver | p, [DATA, mpast, m]) do
if m & delivered then
forall (s,n) € mpast do /I by the order in the list
if n & delivered then
trigger (crb, Deliver | s,n);
delivered := delivered U {n};
if (s,n) & past then
append(past, (s,n));
trigger (crb, Deliver | p, m);
delivered := delivered U {m};
if (p,m) & past then
append(past, (p,m));

Garbage-Collection of Causal Past in the

“No-Waiting Causal Broadcast”

Implements:

CausalOrderReliableBroadcast, instance crb.

Uses:
ReliableBroadcast, instance rb;
PerfectFailureDetector, instance P.

// Except for its (Init) event handler, the pseudo code on the left is

/[part of this algorithm.

upon event (crb, Init) do
delivered = 0,
past :=];
correct :=11;
forall m do ack[m] :=0;

upon event (P, Crash | p) do
correct := correct \ {p};

upon exists m € delivered such that self ¢ ack[m] do

ack[m] = ack[m] U {self};
trigger (rb, Broadcast | [ACK, m]);

upon event (rb, Deliver | p, [ACK, m]) do
ack[m)] := ack[m] U {p};

upon correct C ack[m] do
forall (s’,m’) € past such that m’ = m do
remove(past, (s’,m));

13

Exercise 7

Can we devise a Best-effort Broadcast algorithm that satisfies the causal delivery
property, without being a causal broadcast algorithm, i.e., without satisfying the
agreement property of a reliable broadcast?

14

Exercise 8

In the “Waiting Causal Broadcast”, we say that V < W if, foreveryi=1, ..., N, it
holds that V[i] = WIi].

Question: Why do we not use “<” instead of “<"?

Algorithm 3.15: Waiting Causal Broadcast

Implements:
CausalOrderReliableBroadcast, instance crb.

Uses:
ReliableBroadcast, instance rb.

upon event (crb, Init) do
V=[oV;
Isn :=0;
pending := 0;

upon event (crb, Broadcast | m) do
W=V,
W [rank(self)] := Isn;
Isn:=lIsn+1;
trigger (rb, Broadcast | [DATA, W, m]);

upon event (rb, Deliver | p, [DATA, W, m]) do
pending := pending U {(p, W, m)};
while exists (p’, W', m') € pending such that W’ <V do
pending := pending \ {(p’, W',m’)};
V[rank(p')] := V [rank(p’)] + 1;
trigger (crb, Deliver | p', m’);

